Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin

نویسنده

  • Zheng Chen
چکیده

In this paper, a physics-based model is proposed for a biomimetic robotic fish propelled by an ionic polymer–metal composite (IPMC) actuator. Inspired by the biological fin structure, a passive plastic fin is further attached to the IPMC beam. The model incorporates both IPMC actuation dynamics and the hydrodynamics, and predicts the steady-state cruising speed of the robot under a given periodic actuation voltage. The interactions between the plastic fin and the IPMC actuator are also captured in the model. Experimental results have shown that the proposed model is able to predict the motion of robotic fish for different tail dimensions. Since most of the model parameters are expressed in terms of fundamental physical properties and geometric dimensions, the model is expected to be instrumental in optimal design of the robotic fish.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on robotic fish enabled by ionic polymer–metal composite artificial muscles

A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal...

متن کامل

Bio-inspired Underwater Robots Powered by Electroactive Polymer Artificial Muscles

Autonomous under robots are highly demanded in environmental monitoring, intelligent collection, and deep water exploration. Aquatic animals (e.g., fishes, whales, rays, etc.) are ultimate examples of superior swimmers as a result of millions of years of evolution, endowed with a variety of morphological and structural features for moving through water with speed, agility, and efficiency. Recen...

متن کامل

Modelling and Fuzzy Control of an Efficient Swimming Ionic Polymer-metal Composite Actuated Robot

In this study, analytical techniques and fuzzy logic methods are applied to the dynamic modelling and efficient swimming control of a biomimetic robotic fish, which is actuated by an ionic polymer-metal composite (IPMC). A physical-based model for the biomimetic robotic fish is proposed. The model incorporates both the hydrodynamics of the IPMC tail and the actuation dynamics of the IPMC. The c...

متن کامل

Hydrodynamic Performance of an Undulatory Robot: Functional Roles of the Body and Caudal Fin Locomotion

Both body undulation and caudal fin flapping play essential locomotive roles while a fish is swimming, but how these two affect the swimming performance and hydrodynamics of fish individually is yet to be known. We implemented a biomimetic robotic fish that travel along a servo towing system, which can be regarded as “treadmill” of the model. Hydrodynamics was studied a...

متن کامل

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By Zheng Chen Ionic polymer metal composites (IPMCs) form an important category of electroactive polymers (EAPs), also known as artificial muscles. IPMCs have many potential applications in robotics, biomedical devices, and micro/nano manipulation systems. In this dissertation, a systems perspective is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010